2013 National Collegiate Programming Contest

e Problems: There are 10 problems (22 pages in all) in this
packet.

e Problem Input: Input to the problems are through the input
files. Input filenames are given in the table below. Each input
file may contain one or more test cases. Test cases may be
separated by any delimiter as specified in the problem state-
ments.

e Problem Output: All output should be directed to the stan-
dard output (screen output).

e Time Limit: The judges will run each submitted program with
certain time limit (given in the table below).

Table 1: Problem Information Sheet

Problem Name Input File Time Limit
Problem A Matrix Decomposition pa.in 5 sec.
Problem B Symmetric Numbers pb.in 3 sec.
Problem C Binary String Check pc.in 3 sec.
Problem D Company Merge pd.in 2 sec.
Problem E Hitori pe.in 5 sec.
Problem F Tower Defense pf.in 1 sec.
Problem G 3D Future Keys pg.in 1 sec.
Problem H Secrete Island ph.in 3 sec.
Problem I Disjoint Uni-color Paths pi.in 2 sec.
Problem J Square Robots in a Finite Group pj.in 1 sec.

Problem A

Matrix Decomposition: A = LI}
Input File: pa.in
Time Limit: 5 Seconds

A (real symmetric) positive definite matrix is a square matrix whose eigen-
values are all positive. A positive definite matrix plays an important role in
the study of Multivariate Statistical Analysis which are used in a variety of
research areas such as Archaeology, Biology, Computer Science, Electrical En-
gineering, Psychology, Statistics, Zoology, and etc.

One of the most important properties for a real positive definite matrix A
is that A can be decomposed as the product of L and L! with A = L L, where
L is a lower-triangular matrix (a matrix whose entries above its diagonal are
all 0s), and L' means the transpose of L. For example,

9 3 30
, then L= and A= Lx L'
3 5 1 2

A:

Given an n x n positive definite matrix A € R™*", this problem asks you to
write a program to compute the lower triangular matrix L such that A = L*L!
with 2 < n < 5, where each element of A is an integer whose absolute value
is not greater than 50. In the following, we provide an algorithm which takes
the array A(1:n,1:n) as input and the output for L are stored in the main
diagonal part and the lower triangular part of the array A(1 : n,1 : n), that
is, the solution for L is the output of A(i,7), 1 < j < i < n. Of course, the
upper triangular part of L is 0.

Algorithm for A = LL'.
forj=1,2,---,n
t= AG.j);
fork=1,2,---,7—1
E=t— A(j,K) A(j, k);
endfor
A(5,7) = vVt
fori=7+1,74+2,---,n
s = A(i, j);
fork=1,2,---,5—1
s=s—A(i, k) x A(j, k);
endfor
Alij) = 5/AGLJ):
endfor
endfor

Input File Format

The first line of the input file always contains one integer, K < 5, indicating
the number of test cases to come. The next Z]K:l(nj + 1) lines consists of K
sets of an integer of the dimension of the so-called matrix A followed by its
integer elements appearing row by row.

Output Format

The first line of the output file is the number of test cases K. The format of
remaining lines is similar to those in the Input File Format with the contents
of A being replaced by those of L.

Sample Input

3

2

9 3

3 5

5

9 0 0 0 O
0 9 0 0 O
0 0 4 0 O
0 0 0 4 2
0 0 0 2 2

Sample Output

3

2

3 0

1 2

5

3 0 0 0 O
0 3 0 0 O
0 0 2 0 O
0 0 0 2 O
0 0 0 1 1

Problem B

Symmetric Numbers
Input File: pb.in
Time Limit: 8 Seconds

Given n and d, a number x with 0 < x < n — 1 is a symmetric number if
x =dx (mod n). Note that = dz (mod n) is equivalent to z = dx — ny for
some nonnegative integer y. After solving the equation, y must be a multiple
of m. You are asked to find the number of symmetric numbers after n
and d are given.

Technical Specification
e 3 < n < 2,000,000,000.

o 2 < d < 10,000.

Input File Format

The first line of the input file contains an integer, denoting the number of test
cases. In each test case, there is a line containing a pair of integers for the
values of n and d. Note that the values of n and d are separated by a blank.

Output Format

For each test case, output the number of symmetric numbers in one line.

Sample Input

4

9 4

25 4

3280 81
1194880 8541

Output for the Sample Input

3
1
80
20

Problem C
Binary String Check

Input File: pc.in
Time Limit: & Seconds

Grammar-based codes or Grammar-based compression are compression al-
gorithms based on the idea of constructing a context-free grammar (CFG) for
the binary string to be compressed. To compress a data sequence, a grammar-
based code transforms into a context-free CFG. The problem to find the small-
est grammar for an input sequence is known to be NP-hard. Generally, the
produced grammar is further compressed by statistical encoders like arithmetic
coding.

To do so, we need to determine whether a binary string can be generated
by some rules or not. Here we consider the following 2 types of replacement
rules: A — BC, and A — b, where b can be 0 or 1 and the last type is also
called atomic rule. It means the lefthand side symbol can be replaced by the
string on the right. The process usually starts with a specific symbol called
starting symbol. To help finding the best possible generating sequence, each
non-atomic rule has a weight. The weight of a string is the sum of weights of
all rules applied while generating it. For a binary string, there may be more
than one way to generate it from the rules. We're interested in the one with
the minimum weight. Your task is to determine whether a binary string can
be generated by a given set of specific rules. If yes, then output the minimum
weight required to generate the input string; otherwise, simply output -1.

Technical Specification
1. All the strings are binary and of length at most 200.
2. All the numbers are non-negative integers.
3. K: the number of test cases. K < 10.
4. M: the number of symbols. M < 100.
5. N: the number of rules. N < 100.

6. W: the integer weight of non-atomic rule. W < 10000.

Input File Format

The first line of the input file contains an integer K (< 10) indicating the
number of test cases to follow. Each test case starts with 2 positive integers: M
and N indicating the number of symbols and the number of rules, respectively.
L.e., for convenience, we use integers 2,. .., M +1 to indicate the symbols. Also,
all the derivation starts with 2. Then each of the following N lines is with
one of the 2 formats: (1) I J K W —1and (2) I b — 1, where [, J, K
represent symbols, W indicates the weight of corresponding non-atomic rule,

bis 0 or 1, and -1 indicates the end of a rule. Note that numbers are separated
with space(s).

Formally, (1) I J K W indicates that there is a replacement rule V; —
V;Vk with weight W and (2) I b indicates that there is a replacement rule
Vi —b.

The last line of each test case is a binary string, to be tested, of length at
most 200, where the string consists of 0’ and "1’ characters enclosed with a
pair of '$’s.

Output Format
For each test case, output the possible minimum weight or -1 in a separate
line.

Sample Input

2

35
2234 -1
2421 -1
20 -1
30-1

41 -1
0000

35
2234 -1
2421 -1
20 -1

30 -1

41 -1
0101

Output for the Sample Input

12
-1

Problem D
Company Merge
Input File: pd.in
Time Limit: 2 Seconds

We need to solve an “Abundant Company Merge” problem. There is a
sequence S of n companies (cy,...,¢,), and company ¢; has a capital p;. Now
the government wants to merge these companies. However, the government
can only merge two adjacent companies in the sequence S. For example at
the beginning we can merge company c3 and ¢4, but not ¢ and c;. The new
company will have a capital of the sum of the two companies, and replace
the two companies in the sequence S. For example, if originally we have five
companies S = (¢, ¢, 3,4, ¢5) then after merging ¢ and ¢4 into ¢34 the
sequence S becomes (¢q, 2, ¢34,¢5). In this case ¢y and ¢34 can merge since
they are adjacent, but c; and c; cannot merge because they are not adjacent.
The merge will stop when there is only one company left.

The government can collect a tax when merging two companies, and the
tax is 0.001 of the sum of the capitals of the two companies. For example, if c3
has a capital of 30,000 and ¢4 has a capital of 35,000, then the tax collected
for merging c3 and ¢4 is 65. Now given the companies and their capitals, please
calculate the maximum amount of tax the government can collect.

Technical Specification

1. The number of companies n is no more than 2, 000.

2. The initial capital of each company is no more than 100.

Input File Format

The first line of the input contains an integer T' indicating the number of test
cases. For each test case, the first line contains the number of the companies
n. The following n lines represent the capitals of the companies, in unit of
thousand.

Output Format

For each test case, output maximum amount of tax the government can collect.

Sample Input

=W e

Output for the Sample Input
11

Problem E
Hitori
Input File: pe.in
Time Limit: & Seconds

Hitori is a popular single-player puzzle played in some Asian countries.
Given an N by N grid with a positive integer no greater than N? on each cell,
the task is to remove the least number of numbers from the grid so that there
is no repeated numbers left in any column or any row. It can however have
repeated numbers on a diagonal. Note there is a constraint that two removed
numbers cannot be horizontally or vertically adjacent, though they can
be diagonally adjacent. Given a Hitori puzzle, there may have no solution or
many solutions.

Example 1: A 4 by 4 puzzle on the left and a solution on the right by
removing 4 numbers.

26 9 2 2 6 9 0O
8 71 1 N 8§ 7 O 1
4 3 7 6 4 0O 7 6
2 31 2 a3 1 2
Example 2: A 3 by 3 puzzle that has no solution.
2 3 2
3 3 3
2 3 2

Technical Specification

e 0< N <12

Input File Format
The first line of the input file contains an integer, denoting the number of
test cases to follow. The number of test cases for this problem is at most 15.
For each test case, the first line contains N. In the following NN lines, the ith
line contains N numbers, separated by one or many blanks, which are the N
numbers in the ith row.

Output Format
For each test case, output the minimum number of numbers to be removed in
order to solve the puzzle. If the puzzle is not solvable, then output “-1”.

Sample Input

= ~N R ©
N O RN

w
N

N W N WN NN
w w w N o
w

Output for the Sample Input

Problem F

Tower Defense
Input File: pf.in
Time Limit: 1 Second

Tower defense (TD) is a computer game in which we build towers to defend
enemies from reaching our castles. This task will ask you to write a program
to find the most economical way to achieve this goal. The scenario and rules
of the TD game are described as follows.

Your territory is composed of n x m grids. The n rows are numbered from
0 to (n — 1), from top to bottom; the m columns are numbered from 0 to
(m —1), from left to right. Your castle spans across all rows at column 0. The
game proceeds round by round. Let (z;,y;) denote the position of an enemy
i. At the first round (round 0), there are n enemies, with

1. z; =1, fori=0,1,...n—1
2. y; is an integer in [0, m — 1].

At the end of each round, every enemy 7 moves one step toward your castle,
i.e. y; = y; — 1. If any one enemy reaches your castle, you lose the game.

Now let’s talk about how to defend. The life of an enemy ¢ is denoted
by h;. In each round, you are allowed to build at most one tower in your
castle, i.e. at column 0 of a certain row. There are K types of towers; type
Jj (0 < j < K —1) requires cost ¢; and construction time t;, and it causes
damage d; to an enemy. There are two construction rules:

1. You can build only one tower on each row.

2. Once you start to build a tower of type j at round ¢, this tower is finished
at round (¢ + ¢; — 1) and can start to attack enemies at round (¢ + ;).
You cannot start to build the next tower before round (¢ + t;).

In each round, you act first. If no tower is under construction, you can
start to build a new tower. For each row, if there is a finished tower of type
J, it can hurt the enemy ¢ on the same row by damage d; (h; = h; —d;). If
h; <0, the enemy i is dead and causes no threat along this row. At the end
of this round, all live enemies move one step toward your castle. If you can
eliminate all n enemies before any one reaches your castle, you win the game.

Figure 1 illustrates how the game proceeds. We assume that the territory
is composed of 2 x 8 grids. There are two types of towers. The starting po-
sitions of enemy 0 and enemy 1 are (0, 7) and (1,6), respectively. The life of
enemy 0 and enemy 1 are 10 and 3 in round 0, respectively. We start to build
a tower of type 0 in round 0. At the end of round 0, the enemies move one
step, staying at position (0, 6) and (1, 5). Since ty is 2, the tower is finished
at round 1 and can start to attack enemy 0 at round 2. Thus, at the end of

10

h:;= 10, F'f'_ =3

9 End of round 0
®
tower kind 0 hy=10,h, =3
'] End of round 1
E Cyp = 10
d:: = -]- Q
f:; =2
ho=6.h=3
pilly ® End of round 2
S cy = 50
f'_ = 1
hy=2.h =3
plly ® End of round 3
®
All enemies are eliminated. You win the game.
iy End of round 4
iy

Figure 1: An example in which you win by building two towers of type 0. This
is one of the most economical solutions.

round 2, enemy 0 moves to position (0, 4), and its life is reduced by 4 (d).
At the end of round 4, the enemies are eliminated and you win the game. In
this example, you can start to build a tower of type 0 on row 0 in round 1.
You can also win the game by building a tower of type 1, but it costs more
(¢; =50 > ¢o = 10) and is not the most economical way to win.

Figure 2 is another example. The enemys’ starting positions are (0, 5) and
(1, 4) in round 0. If you start to build a tower of type 0 on row 0 in round 2, the
tower starts to attack enemy 0 in round 4. At the end of round 4, the enemy’s
life is reduced to 6 and reaches the castle. It means that you lose the game.
In this example, you need to build a tower of type 1 in round 2 to win the game.

Your task is to write a program to determine the minimal cost required to
win the game.

11

;’f:;: 10. F’j'_ =3

®
®
hy=10.h, =3
tower kind 0 - -
@ C:; =10 Q
d:; =4 Q
=2
F’f:; = 10. ;’f'_ =-1
tower kind 1
®
¢, =350
B =10 il
=1
'T-j:: =10, h'_ =-1
pilly
11, = 6. You lose the game.
®
U

End of round 0

End of round 1

End of round 2

End of round 3

End of round 4

Figure 2: An example in which you lose by building only towers of type 0.
You need to build at least one tower of type 1 to win this game.

Technical Specification

e The number of rows n and columns m, 1 <n <10 and 1 <m < 1, 000.

The number of tower types K, 1 < K < 10.

The life of enemy h;, 1 < h; < 100.

The cost of tower ¢;, 1 < ¢; < 100.

The damage of tower d;, 1 < d; < 20.

The construction time of tower ¢;, 1 <t; < 10.

12

Input File Format

1. The first line of the input file contains an integer, denoting the number
of test cases to follow.

2. For each test case,

(a) The first line contains three integers for K, n, and m, separated by
a space.

(b) In the next K lines, each line j (j = 0,..., K — 1) contains three
integers, denoting the cost ¢;, damage d;, and construction time ;.
Every two integers are separated by a space.

(c) In the last n lines, each line ¢ (i = 0, ...,n— 1) contains two integers,
denoting the starting column y; and the life h; of enemy i. Two
integers are separated by a space.

3. Every two cases are separated by an empty line.

Output Format

For each test case, output the minimal cost required to win the game if it
is possible to win. Otherwise output -1. Output the result for each test case
in a separate line.

Sample Input

228
10 4 2
50 10 1
7 10
6 3

228
10 4 2
50 10 1
5 10
4 3

Output for the Sample Input

20
60

13

Problem G
3D Future Keys
Input File: pg.in

Time Limit: 1 Second

In year 2100, digitalized virtual 3D key technology is getting popular. 3D
locks and keys are made of 3D cubes as in Fig. 1. A 3D key is consisted of blade
part (black cubes) and bow part (white cubes). A 3D lock contains keyway
part (greyed cubes) and other remaining part (white cubes). The cubes of a
lock or key are connected; that is, they must be attached each other at cube

/‘ f
..

(A) (B)

Figure 1: (A). A lock with greyed color keyway. (B). A key with black color
blade.

Figure 2: Contacted keyway and blade.

In real world, a physical key may not be able to insert into a lock because
the entrance of a lock can block a key which has incorrect shape. However,
3D keys are digitized virtual keys. So, you do not need to check if a key is
blocked while approaching a lock from some directions.

To open a 3D lock, you need to make the blade contact the keyway in a
way that maximizes the total number of contacted cubes. White cubes can
make some choices of contacting infeasible. The total number of contacted
non-white cubes can be computed by counting the touched (i.e., cube face to
cube face) opposite cubes for each keyway and blade cubes. For example, in
Fig. 2, the keyway cube A has one blade cube C' touching its one of 6 faces.
So, cube A has one point. In this example, B has one point, C' has one point,
and D has one point. Touching with white cubes scores no points. 4 points are
the maximum value for the example. Given a key and a lock, please compute
the maximum value among all the combinations.

14

Input File Format
The test data begins with an integer N which is the number of test cases. In
each test case, a lock is described first. The data of a lock or a key begins
with an integer C'(1 < C' < 20), which is the number of cubes. The cubes are
described using a XYZ-axis in Fig. 3. The first cube always starts at position
(0,0,0). The other cubes are described relatively based on (0,0,0). A cube is
described by (z y z t), where z,y, 2(—20 < z,y, 2z < 20) are 3D coordinates
and t is the types of the cube. The types can be:

'K’: A keyway cube

'B’: A blade cube

"W’: A white cube.

y
A

> X

Figure 3: 3D XYZ-axis system.

Output Format

For each test case, please print the maximum points of contacted cubes.

Sample Input

O O O O
= O O O
=== =

o
(@)
oo

N = O 01T ON - O BN
o
o
oo

15

300W
301W

00O0W
100K
200K
001W

00O0B
1008B
200W
1108B
11-18B

20

-1 W

Output for the Sample Input

16

Problem H

Secret Island
Input File: ph.in
Time Limit: & Seconds

Professor Lee is an archaeologist who discovers a great treasure hidden on
a secret island S. The island has N sculptures (numbered 1,2,..., N) and
N — 1 trails. Each trail connects a pair of distinct sculptures, and can be
followed in either direction. A path is a series of trails. Furthermore, there is
exactly one path connecting any two sculptures in S.

The distance between two sculptures i and j, denoted by d(i,j), is the
minimum number of trails connecting them. For example, in Figure 1, the
distance between Sculpture 7 and Sculpture 6 is 4. The eccentricity of a sculp-
ture 7, denoted by (i), is maxi<;j<ny d(7,7). An ideal sculpture is a sculpture
with the minimum eccentricity.

Professor Lee believes that the treasure is hidden under some ideal sculp-
ture. Your task is to write a computer program to compute the number of
ideal sculptures on the secret island, and compute the sum of the labels of
ideal sculptures. For example, consider a secret island S with eight sculptures
and seven trails shown in Figure 1. Sculptures 2 and 3 are ideal sculptures
with €(2) = €(3) = 3. The sum of their labels is 2+3=5.

Figure 1: A secret island S with eight sculptures and seven trails.

Technical Specification

e 1 <N <1,000,000.

Input File Format

The first line of the input file contains an integer, denoting the number of test
cases to follow. For each test case: the first line contains one positive integer
N. The following N — 1 lines represent N — 1 trails in which each line contains
two integers (separated by a space) representing two sculptures connected by
the trail.

17

Output Format
For each test case, output the number of ideal sculptures and the sum of their
labels. The two output numbers are separated by a space.

Sample Input

0 O W NN O

N = W WwWdHr WONDNNDE = 00N
N

Output for the Sample Input

25
12

18

Problem 1

Disjoint Uni-color Paths
Input File: pi.in
Time Limit: 2 Seconds

A social network is a graph G = (V, E') in which each node represents an
actor and there is a link between two nodes if they have some kind of relation.
For a multi-relations social network, there are different kinds of relations, and
it can be described by an edge-colored graph. That is, each edge is labeled by
a color number—a nonnegative integer at most ¢ — 1. Note that there may be
several edges of the same or different colors between a pair of nodes.

It is an important issue to compute the maximum number of disjoint paths
between two nodes when analyzing a social network. Let s,z € V. A path with
endpoints s,t is called an st-path. Two st-paths are disjoint if they have no
common internal node, and a set of st-paths are disjoint if they are mutually
disjoint. A path is of uni-color if all the edges of the path have the same color.
The length of a path is the number of edges in the path. For social networks,
short paths are much more important, and therefore only paths of length at
most three will be considered in this problem. Formally, your task is to write
a program to solve the following problem.

Given an edge-colored graph G and two nodes s, ¢, find the maxi-
mum number of disjoint uni-color st-paths of length at most three.

Technical Specification
In this problem, graphs are undirected. For each instance:

1. the node set V = {i|0 <i <n—1} and 2 < n < 500;
2. s=0andt=n—1;
3. the number of color is at most 10; and

4. the number of edges m is at most 50,000.

Input File Format

The first line of the input file contains an integer, denoting the number of test
cases to follow. For each test case, the first line contains two integers n and
m. In the next m lines, each line contains three integers separated by a space,
which are the two endpoints and the color of an edge (in this order).

Output Format

For each test case, output the solution in one line.

19

Sample Input

00001223233 —~ = 1A A1 N ANANNMNDNMNMDNMNO
~—
A F O I A A O MMM A A ANMWOLME O WO ANLWH

AN O FOOOIFTNOANMOWO A ANMOMIEANLL NM

Output for the Sample Input

20

Problem J

Square Roots in a Finite Group
Input File: pj.in
Time Limit: 1 Second

Finite groups are used in almost all modern cryptosystems. For example,
RSA cryptosystem uses multiplicative group Z, where n is a product of two
large primes. They are also used in our daily life. For example, if we map
Sunday to 0, Monday to 1, ..., Saturday to 6, then it is an additive group Zr.

Let n be a positive integer. We use Z,, to denote the additive group whose
elements are 0,1,...,n — 1. We use Z to denote the multiplicative group
whose elements are the integers a in 1,2,...,n — 1 with ged(a,n) = 1. For
example, the elements in Zg are 0,1,2,3,4,5. The elements of Z§ are 1, 5.

In addition to the elements, a group has an operator associated with it.
The operator of an additive group is addition (+), and the operator of a
multiplicative group is multiplication (x). These two operators are very similar
to the ordinary addition and multiplication of integers, except that all results
should be the reminder after dividing by n. For example, 34+4 =7 =1 in Zg;
3x4=12=51inZ3.

In this problem, you are going to implement an efficient algorithm for
computing square roots in a finite multiplicative group Z;, where p is a prime.
Formally, the problem is: Given two positive integers a and p, solve the con-
gruence equation

r*=a (mod p)

for x. For example, let p = 13, 4> = 16 = 3 (mod 13). Therefore, the square
root of 3 is 4 in Zj,.

Note that we use a = b (mod n) to denote that a and b have the same
reminder after dividing by n.

Of course not all elements in Z; has square roots. Look at the following
data for p = 13:

12=1 122 =1

22 =4 112 =4

32=9 102=9

42=3 92 =3

52 =12 82 =12

62 =10 7 =10
It can be seen that only half of the elements in Zj;, namely 1,3,4,9, 10,12,
has square roots. This is true in Z; for any prime p > 2.

In this problem, we assume that the prime p > 2. The following facts about
the multiplicative group Z; may help you in solving the square root problem.

1. For any a € Z, a’~' =1 (mod p).

2. An element a € Z; has square roots if and only if a?~V/2 =1 (mod p).

3. For any element a € Z;, if z is a square root of a in Z;, then —r =p—x
(mod p) is also a square root of a, and these are the only square roots
of a in Zj.

21

Note that, by the above facts, an element a € Z; does not have square roots
if and only if a® V2= ~1=p—1 (mod p).
One way to solve the problem can be described briefly as follows.

1. Write p — 1 = 2°m, where m is odd.
2. Find an element b € Z; which has no square root.

3. Let b = 0™ mod p, z = a™tY/2 mod p and t = a™ mod p. It can be
verified that z* = at (mod p).

4. Design a loop to modify the values of x, ¢t and b by using the old value
of b.

Make sure after each iteration, the congruence relation x? = at (mod p) holds.
The algorithm finds the solution x when ¢ = 1. Of course, you need to handle
the special case when p — 1 = 2m.

Input Format

The input to the problem is a file containing many test cases. Each test case
is written in one line, which contains two integers a and p, 1 < a < p < 23!
The last line of the input file contains a single 0. You do not need to process
this line.

Output Format

The outputs for each test case is an integer x € Z;, satisfying r? = a (mod p).
Since the solution is not unique, always print the solution with smaller value.
Print the output of each test case in one line with no leading and tailing spaces.
If there are no solutions, print “no solutions”.

Sample Input

Sample Output for the Sample Input

4
6
15

22

